Showing posts with label #97. Show all posts
Showing posts with label #97. Show all posts

Quantum Mechanics - Probability Current Density

A particle of mass m has the wave function 

ψ(x,teiωt [αcos(kx) + βsin(kx)] 

where α and β are complex constant and ω and k are real constants. The probability current density is equal to which of the following? (Note: α* denotes complex conjugates of α, and |α|2α*α .)


(GR9677 #97)
Solution:

Probability density function:

J = \frac{\hbar}{2mi} \left( \psi^* \nabla \psi - \psi \nabla \psi^*\right)<br><br>

Answer: E

Condensed Matter - Effective mass

Lattice forces affect the motion of electrons in a metallic crystal, so that the relationship between the energy E and wave number k is not the classical equation E = ħ²k²/2m, where m is the electron mass. Instead, it is possible to use an effective mass m* given by which of the following?

A.

B.

C.

D.

E.
(GR9277 #97) 
Solution: 

F = m*a

F = dp/dt = ħ dk/dt     (momentum, p = ħk)

dvg/dt

Group velocity, vdω/dk

Energy of electron, E = hfħω 
ω E/ħ





F = m*a



Classical Mechanics - Rotational Motion


Two uniform cylindrical disks of identical mass M, radius R, and moment inertia ½MR2 collide on a frictionless, horizontal surface. Disk I, having an initial counterclockwise angular velocity ω0 and a center-of-mass velocity v0ω0R to the right, makes a grazing collision with disk II initially at rest. If after the collision the two disks stick together, the magnitude of the total angular momentum about the point P is

A. Zero
B. ½MR2ω0
C. ½MR2v0
D. MRv0
E. Dependent on the time of the collision
(GR8677 #97)  
Solution:

Ltotal = Ltrans + Lrot

Ltrans = r × p
r = distance from the center of disk I to point P.
At point P, R = r.

Ltrans = R × p = R × Mv0 = M(R × v0)

From the problem, ω0  is counterclockwise and v0 is to the right. Thus, the crossproduct (R × v0) is negative. Also, v0ω0R

Ltrans =  −½MR2ω0

Lrot = Iω0

Moment inertia, I = ½MR2

Lrot = ½MR2ω0

Ltotal = −½MR2ω0 + ½MR2ω0 = 0

Answer: A

Optics - Snell's Law


A beam of light has a small wavelength spread δλ about a central wavelength λ. The beam travels in vacuum until it enters a glass plate at an angle θ relative to the normal to the plate. The index of refraction of the glass is given by n(λ). The angular spread δθ' is given by

A. 

B. 

C.

D.

E.
(GR0177 #97)
Solution:

Snell's Law: nsin θ1 nsin θ2

Given:
n= 1 for vacuum
n= n(λ
θθ
θ θ'

sin θ n(λ) sin θ'

Take the derivative of the equation with respect to λ:

dsin θ/dλ dn(λ)sin θ'/ ...(Eq.1)

θ is a constant → dsin θ/dλ = 0

Eq.1 
dn(λ)sin θ'/ 
0 = n(λ(dsin θ'/) + sin θ' (dn(λ)/)   ...(Eq.2)

Since n is a function of λθ' is also a function λ →  
dsin θ'/dλ (dsin θ'/dθ')(dθ'/) cos θ' (dθ'/) 

Eq.2 
0 = n(λ) cos θ' (dθ'/) + sin θ' (dn(λ)/
n(λ) cos θ' (dθ'/)  sin θ' (dn(λ)/
n(λ) (dθ'/)  tan θ' (dn(λ)/
dθ'/  (tan θ'/n(λ)) (dn(λ)/
δθ' = |(tan θ'/n(λ)) (dn(λ)/)|

Answer: E

Nuclear & Particle Physics - Compton Scattering

In the Compton effect, a photon with energy E scatters through 90o angle from stationary electron mass m. The energy of the scattered photon is

A. E
B. E/2
C. E2/mc2
D. E2/(Emc2)
E. Emc2/(E + mc2)
(GR0877 #97)
Solution: 

Compton scattering: λf − λi = h/mc (1− cosθ)
Photon energy, Ehc/λ

hc/Ef − hc/E = h/mc (1 − cos 90o)
1/Ef − 1/E = 1/mc2 (1 − 0)
1/Ef  1/mc2 1/E
Emc2/Ef  = E + mc2
Emc2/Ef  E + mc2
E = Emc2/E mc2 

Answer: E