Showing posts with label De Broglie Wavelength. Show all posts
Showing posts with label De Broglie Wavelength. Show all posts

Quantum Mechanics - Free Particle

A free particle with initial kinetic energy E and de Broglie wavelength λ enters a region in which it has potential energy V. What is the particle’s new de Broglie wavelength?

A. λ(1 + E/V)
B. λ(1 − V/E)
C. λ(1− E/V)− 1
D. λ(1 + V/E)½
E. λ(1 − V/E)− ½
(GR0177 #46)
Solution:

The initial kinetic energy of free particle:


De Broglie wavelength:


Energy of the particle when it enters the region:


So, its wavelength becomes:




Answer: E

Nuclear & Particle Physics - Bragg Diffraction

When a narrow beam of monoenergetic electrons impinges on the surface of a single metal crystal at an angle of 30 degrees with the plane of the surface, first-order reflection is observed. If the spacing of the reflecting crystal planes is know from x-rays measurements to be 3 Angstrom, the speed of the electron is most nearly

A. 1.4  × 10−4 m/s
B. 2.4 m/s
C. 5.0  × 10m/s
D. 2.4  × 10m/s
E. 4.5  × 10m/s
(GR8677 #91)
Solution:

Bragg's Law: nλ = 2d sin θ 

De Broglie wavelength: λ h/mev

h/me2sin θ n
nh / (2mesin θ)

Given:
n = 1 (first-order reflection)
d = 3 Angstrom = 3 × 10−10 m
θ = 30 →  sin 30 = 0.5
m=  9.11 × 10−31 kg
h = 6.63 × 10−34 Js

= (6.63 × 10−34)/[2( 9.11 × 10−31)(3 × 10−10)(0.5)]
= [6.63/(9.11 × 3)] × 10−34 × 1041
= [2/(3 × 3)] × 10 0.22 × 10= 2.2 × 10m/s  

Answer: D