\Rightarrow
\rightarrow
\infty
\equiv
\approx
\propto
\simeq
\sim
\neq
  \geq
\gg
\ll
\langle{x}\rangle
\vec{E}
\ddot{x}
\dot{x}
\partial
Matrix
command:
\left| \begin{array}{ccc}
a & b & c\\
d & e & f \\
g & h & i
\end{array} \right|
Multiline Equation:
command:
\begin{aligned}
x^2+4x-21&=0\\
x^2+4x&=25\\
x^2+4x+4&=21+4\\
(x+2)^2&=25\\
x+2&=\pm 5\\
x&=-2\pm 5
\end{aligned}
\displaystyle \sum_i^n a_i
\sum_{i=1}^nx_iy_i
\frac{a}{b}
\sqrt{z}
command: \left. \frac{du}{dx} \right|_{x=0}
Big Size:
\Huge A^2
\rightarrow
\infty
\equiv
\approx
\propto
\simeq
\sim
\neq
  \geq
\gg
\ll
\langle{x}\rangle
\vec{E}
\ddot{x}
\dot{x}
\partial
Matrix
command:
\left| \begin{array}{ccc}
a & b & c\\
d & e & f \\
g & h & i
\end{array} \right|
Multiline Equation:
command:
\begin{aligned}
x^2+4x-21&=0\\
x^2+4x&=25\\
x^2+4x+4&=21+4\\
(x+2)^2&=25\\
x+2&=\pm 5\\
x&=-2\pm 5
\end{aligned}
\displaystyle \sum_i^n a_i
\sum_{i=1}^nx_iy_i
\frac{a}{b}
\sqrt{z}
command: \left. \frac{du}{dx} \right|_{x=0}
Big Size:
\Huge A^2
No comments :
Post a Comment