Electromagnetism - Faraday’s law


A coil of 15 turns, each of radius 1 centimeter, is rotating at a constant angular velocity ω = 300 radians per second in an uniform magnetic field of 0.5 Tesla, as shown in figure. Assume at time t = 0 that the normal  to the coil plane is along the y-direction and that the self-inductance of the coil can be neglected. If the coil resistance is 9 ohms, what will be the magnitude of the induced current in milliamperes?

A. 225π sin ωt
B. 250π sin ωt
C. 0.08π cos ωt
D. 1.7π cos ωt
E. 25π cos ωt
(GR0177 #86)
Solution:

Ohm’s Law: ɛ V = IR
→  ɛ R

Faraday's Law: ɛ = − dΦdt

Magnetic Flux:  dΦB =  NBdA

At time t = 0, the normal to the coil plane is along the y-direction.

It means: n̂ ∥ ŷ BA → Φ= 0

→ Φ=  NBA sin ωt, since Φ(t = 0) = 0

ΦB = − NBπr2 sin ωt
ɛ = − dΦdt = NBπr2 ω cos ωt

=  ɛ R = (NB0ωr2/ Rπ cos ωt

 = 15 turns
B0 = 0.5 Tesla
ω = 300 rad/s
 = 1 cm =  102  m
= 9 ohms

= (15 ×  0.5 × 300 × 10−4 9π cos ωt
= (25 × 10−3π sin ωt Ampere
= 25 π sin ωt milliAmpere

Answer: E

No comments :