Classical Mechanics - Linear Momentum




As shown in the picture, a ball of mass m suspended on the end of a wire, is released from height h and collides elastically, when it is at its lowest point, with a block of mass 2m at rest on a frictionless surface. After the collision, the ball rises to a final height equal to

A. 1/9 h
B. 1/8 h
C. 1/3 h
D. 1/2 h
E. 2/3 h

(GR9677 #07)

Solution:

Conservation of momentum of the system:

mavmbvb = mavambvb

Given:
mm
m= 2m
vb = 0

mv+ 0 = mva+ 2mvb 
v = va+ 2vb   (Eq.1)

Conservation of kinetic energy of the system:

½ mava² + ½ mbvb² = ½ mava'² + ½ mbvb'²
mva² + 0 = mva'² + 2mvb'²
va² = va'² + 2vb'²  (Eq.2)

(Eq.1) → (Eq.2)
(va+ 2vb')² = va'² + 2vb'²
va'² + 4va'vb+ 4vb'² = va'² + 2vb'²
4va'vb = 2vb'² − 4vb'²
2va' = − vb'  
vb = −2va'  (Eq.3)

(Eq.3) →  (Eq.1)
v = va+ 2vb
v = va+ 2(−2va')
v = − 3va'  (Eq. 4)

For the pendulum, conservation of energy:

at the moment of the collision
U T → magh = ½ mava² → va = (2gh)½

after the collision
U'  T→ magh' = ½ mava'² → va= (2gh')½

Thus, (Eq. 4):
v = − 3va'  
(2gh)½  = − 3(2gh')½ 
[(2gh)½]² = [− 3(2gh')½

h  = 9h'
h' = ¹⁄₉h 

Answer: A

No comments :