![C=3kN_A \left( \frac{hv}{kT} \right)^2 \frac{e^{hv/kT}}{(e^{hv/kT}-1)^2}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_sqbcY30t4xwxNso0hx4ZJRdBPZ4BjMfnmCq_frdA1oHc8HAnXGkFE6HiL2y3Wd0E1VFliPSm0rE1qWj_3a1HJDpfHw483EZhsJfPY7gVUU2Qi_uSmJKMvljxu4ZEoF7L3g_DgqjFLiQtHTCIdbRcQ2fMTDA4iAMQMO-q4b561QVclRqHz8ldXP_5829TKup8atD9lhHglHrZqKxLQ7CZ4gb3se80AS1MP-7cquEAV0eI7tsAHpNJB6uVg1DFpfuugvxpLmhePP0CkSy0YjjPxI=s0-d)
Einstein’s formula for the molar heat capacity
C of solids is given above. At high temperatures,
C approaches which of the following?
A. 0
B. 3
kNA(
hv/kT)
C. 3
kNAhv
D. 3
kNA
E.
NAhv
(GR0177 #65)
Solution:
At high temperature → Classical approach, there’s no
hv involved.
Answer: D
No comments :
Post a Comment