The components of the orbital angular momentum operator
![\vec{L}=(L_x,L_y,L_z )](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_udb5KVg1_zqflNjUrYekqJcAg63z7oHCIcaGm0mLDZQOOsNXpDwNHTAPNKD8oRdaHP8jY5UgaXFXVyvTbmqDz1KDSD0Iw8oeC0_0LEuCSEnuk4xSE4midLnqE2Tsc6LWLO9G9L_tDiJXk=s0-d)
satisfy the following commutation relations.
What is the value of the commutator
![\left[L_x L_y,L_z \right ]](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_td0Z92Lwf1_VPbI-0tA3gfL_a-IA5FulJQl6CSV03JagiLW3f3NHCeO3MYn43NI3-gpXur7H7q4tSWAOhXZrvfNiVMcwGbCG9eZyylwWzg_jz_eHNUztm3FBsiNx7NefH0EocCZxpo5iWfr7eq9MWi2xBw_AddK_7zApQ=s0-d)
?
A.
B.
![i\hbar (L_x^2+L_y^2 )](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_vKuV1qKYISF-qQghA0iULVtBLTW7YFHOn_SIeccU_lg6AoOOhzwipO_94nTVXJctDKlNf-uVnCMyPuunRouccBTuFDeioY0YwNdFmvd7vX0nOXk_oxt09lwbMw8NI5OBv0ergylgdzi_rSpYAlzQ=s0-d)
C.
![-i\hbar (L_x^2+L_y^2 )](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_szBlc9rdIgyGyOADfDolA1LKC3gOt4lDjZvpupp2TVRcTLXZGOwYMaUvuD_z-xZUhpINri47G7Ia0y24c8unxbcUg5YCi-1MKlhVjt2zG87J0d-pNDmu_ERSZTo9OKJR5bd7dpsvKAcpGXTWW12w=s0-d)
D.
![i\hbar (L_x^2-L_y^2 )](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_s9mN2ym6q2K8Av-8U0itPZRRUOLyv0_HlHkJCxla9dCBLwFBk2w96DlQp15ALNdxBaagA8IeporeTrJL0AHtnWkJlpqnfOKpy8FiQk0PIMN-OH--Lq5M6AmzhSZZr-hJiMBrjV9SfGuDxW2pspbQ=s0-d)
E.
(GR0177 #43)
Solution:
Commutator
identities: [
A,
B] = − [
B,
A]
and, [
B,
AC] =
A[
B,
C] + [
B,
A]
C
Therefore,
Answer: D
No comments :
Post a Comment