Maxwell’s equations can be written in the form shown below. If magnetic charge exists and if it is conserved, which of these equations will have to be changed
Solution:
Gauss Law for magnetism:![\nabla\cdot\vec{B} = 0](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_tTGFuaufaqFLs-VXSiqvI5znrPPHeVLrOIiO5c8EYZHSrSGYWEYDEQpJM56m8HqvMYvJ4B-8bBjFW3jYKe59frK1T_bfjr_P2uxzJq7n53tY2E6QYB66N58P1xfKaxxDZPoovthZWzW2P65H8SqlVJ5sA=s0-d)
Faraday Law of Induction:![\nabla\times\vec{E} = -\frac{\partial\vec{B}}{\partial{t}}](https://lh3.googleusercontent.com/blogger_img_proxy/AEn0k_suBpUqfsES5MuIeuteUdNfi6mKT_ud5fO8qK93uw7v1OboAvCP8azg0RbXd_hCsVov-hWyNshJhlxj_homHt7jmibIz7iBvnP_kp93LYj57EASF6-EolAejXNn8lqwT4i5OQJu2vu6Atzkujv8B2ovxEl4lrZIWghDeQbO82mSLBsKpcHc5_Ali4CLNm46MDwp3HkLjHAfJPMmRIKo37AhHhVAacNnogFFfc8Km9mB=s0-d)
Answer: E
Solution:
Gauss Law for magnetism:
Faraday Law of Induction:
- The electric field is equal to the negative of the rate of change of the magnetic flux.
- If there is magnetic monopole, an extra term (involving the current of magnetic monopoles) must be added to the right-hand side of the equation in order to make it self-consistent.
Answer: E
No comments :
Post a Comment