Classical Mechanics - Period of the Motion


A particle of mass m moves in the potential above. The period of the motion when the particle has energy E is

A.

B.

C.

D.

E.
(GR9677 #93)
Solution:

Total Period: TTSHO Tgrav

For V = ½kx→ Simple Harmonic Oscillator (SHO)
Period of SHO, TSHO = 2π√(k/m)

The graph shows only half of the usual SHO potential:
TSHO = ½ × 2π√(k/m) = π√(k/m)

Total Period: T = π√(k/m) + Tgrav

Answer: D


Notes:

To find Tgrav with V = mgx:

E = T + V = 0 + mgx 
x = E/mg

Kinematic Equation:

xv0t +  ½gt2
v= 0
x = ½gt= E/mg
t2= 2E/mg2
Tgrav = √(2E/mg2)

Since the particle has to travel from the origin to the right endpoint and then back to the origin, the total time contribution from this potential:

Tgrav = 2√(2E/mg2)

The total period is, T = π√(k/m) + 2√(2E/mg2)

No comments :