Special Relativity - Relativistic Energy

A photon strikes an electron of mass m that is initially at rest, creating an electron-positron pair. The photon is destroyed and the positron and two electrons move off at equal speed along the initial direction of the photon. The energy of the photon was

A. mc2
B. 2mc2
C. 3mc2
D. 4mc2
E. 5mc2
(GR0177 #99)
Solution

Relativistic Energy: 

E = (p2c+ m02c4)1/2

Photon has no mass, m= 0, therefore,

E(photon) = (p2c)1/2 = pc

Initially, electron is at rest, thus momentum is zero, therefore,

 E(electron) = (m02c4)1/2 = mec2
 
Total initial energy of the system,

Ei = E(photon) + E(electron) = pc + mec2

After collision, 3 particles (2 electrons and a positron) move off at equal speed, thus each has p/3 momentum.

Electron and positron has the same mass.

Thus, each particle has energy,

Ef (electron) = Ef (positron) = [(p/3)2cme2c4]1/2

Total final energy of the 3 particles, Ef  = 3 [(p/3)2cme2c4]1/2

Conservation of energy, Ei = Ef 

pc + mec = 3 [(p/3)2cme2c4]1/2
(pc + mec2)= 9 [(p/3)2cme2c4]
p2c+ me2c+ 2pmec3 = 9(p/3)2c + 9me2c4
p2c+ me2c+ 2pmec3 p2c + 9me2c4
me2c+ 2pmec3 = 9me2c4
2pmec3 = 8me2c4
p = 4mec
Energy, E pc = 4mec2

Answer: D

No comments :