Showing posts with label #46. Show all posts
Showing posts with label #46. Show all posts

Electromagnetism - Faraday’s law



A circular wire loop of radius R rotates with an angular speed ω in a uniform magnetic field B, as shown in the figure. If the emf ɛ induced in the loop is ɛ0 sin ωt, then the angular speed of the loop is

A. ɛ0 R/B
B. 2πɛ0/R
C. ɛ0/BπR2
D. ɛ02/BR2
E. tan−1(ɛ0/Bc)
(GR9677 #46)
Solution:

Faraday's Law: ɛ = − dΦ/dt
with  Φ = NBA  

Given:
= 1
B uniform (constant)
ɛ =  ɛ0 sin ωt

→ ɛ = − B dA/dt =  ɛ0 sin ωt
− B dA =  ɛ0 sin ωdt 
 B ∫dA =  ɛ0 ∫ sin ωdt 
− BπR2 = − ɛ0/ω  cos ωt
ω = ɛcos ωt / BπR2

at t = 0,
ω ɛ/ BπR2

Answer: C


Alternative solution:
πR cos ωt
ɛ = − dΦ/dt = − B dA/dt 
ɛ = − BπR d(cos ωt)/dt 
ɛ0 sin ωt BπR2ω  sin ω
ɛ0BπR2ω  
ω ɛ/ (BπR2)

Thermal Physic - Critical Isotherm

Questions 46-47.


Isotherms and coexistence curves are shown in the PV diagram above for a liquid-gas system. The dashed lines are the boundaries of the labeled regions. Which numbered curve is the critical isotherm? 

A. 1
B. 2
C. 3
D. 4
E. 5
(GR9277 #46)
Solution:

Critical isotherm (critical temperature) → dP/dV = 0
  • the derivative of the curve is zero
  • the tangent to the curve results in a horizontal line
  • the point where the vertical and horizontal dashed lines cross


Answer: B

Thermal Physics - Blackbody Radiation

A blackbody at temperature T1 radiates energy at a power level of 10 milliwatts (mW). The same blackbody, when at a temperature 2T1, radiates energy at a power level of 

A. 10 mW
B. 20 mW
C. 40 mW
D. 80 mW
E. 160 mW
(GR8677 #46)
Solution:

Blackbody radiation (Stefan-Boltzmann's law): u = σT4
Constant σu / T4

u1T14 = u2T24
10 / T1u/ (2T1)4
u
2 = (10)(2T1)T1= (10)(16) =160

Answer: E

Quantum Mechanics - Free Particle

A free particle with initial kinetic energy E and de Broglie wavelength λ enters a region in which it has potential energy V. What is the particle’s new de Broglie wavelength?

A. λ(1 + E/V)
B. λ(1 − V/E)
C. λ(1− E/V)− 1
D. λ(1 + V/E)½
E. λ(1 − V/E)− ½
(GR0177 #46)
Solution:

The initial kinetic energy of free particle:


De Broglie wavelength:


Energy of the particle when it enters the region:


So, its wavelength becomes:




Answer: E