Thermal Physics - Isothermal



Suppose one mole of an ideal gas undergoes the reversible cycle ABCA shown in the P-V diagram above, where AB is an isotherm. The molar heat capacities are Cp at constant pressure and Cv at constant volume. The net heat added to the gas during the cycle is equal to

A. RTh (V2/V1)
B. −Cp(Th − Tc)
C. Cp(Th − Tc)
D. RTh ln (V2/V1) − Cp(Th − Tc)
E. RTh ln (V2/V1) − R(Th − Tc)
(GR9677 #15)
Solution:

AB Isotherm → T Constant = Th

Ideal Gas: PV = nRT 
nRT / V

= 1 mole,

WAB = V1VP dV = RTh V1V(1/V) dV  = RTh ln (V2/V1)

BC Isobaric → P constant = P2

WBC = V2VP dV = P2 (V1− V2 P2V1   P2V2

From the diagram:
P2V1 = nRTc 
P2V2 = nRTh

WBC = nR(Tc − Th = R(Tc − Th)

WCA = 0  since V constant

Total W WAB WBC = RTh ln (V2/V1) + R(Tc − Th)

or

RTh ln (V2/V1) − R(Th − Tc)

Answer: E

No comments :