Electromagnetism - Stokes Theorem

The line integral of  u = y− xj + zk around a circle of radius R in the xy-plane with center at the origin is equal to

A. 0
B. 2πR
C. 2πR2
D. πR2/4
E. 3R3
(GR9677 #43)
Solution:

Stokes' Theorem: The line integral of a vector field around a closed curve is equal to the surface integral of the curl over that vector field.

F · dl = ∫ (∇ × F) · dA

Given:  u = y− xj + zk 

∇ × u =

= 0 + 0 − k̂ − k̂ − 0 − 0 = − 2

∫ (∇ × u) · dA = − ∫ 2 dA = − 2 ∫ dA  = − 2  = − 2πR

Answer: C

No comments :