The adiabatic expansion of an ideal gas is described by the equation PV γ = C, where γ and C are constants. The work done by the gas is expanding adiabatically from the state (Vi, Pi) to (Vf, Pf) is equal to
A. PfVf
B. ½(Pi + Pf)(Vf − Vi)
C. (PfVf − PfVi)/(1 − γ)
D. Pi(Vf 1+ γ − Vi 1+ γ )/(1 + γ)
E. Pf (Vf 1- γ − Vi 1- γ)/(1 + γ)
(GR9677 #73)
Solution:
PV γ = C
P = CV −γ
W = ∫ P dV
= C Vi∫Vf V −γ dV
= [C/(−γ + 1)] V −γ+1 Vi|Vf
= [C/(1 − γ)] (Vf 1−γ− Vi 1−γ)
= (VfCVf −γ− Vi CVi 1−γ)/(1 − γ)
= (VfPf − Vi Pi )/(1 − γ)
= (PfVf − PiVi )/(1 − γ)
Answer: C
No comments :
Post a Comment