Optics - Snell's Law


A beam of light has a small wavelength spread δλ about a central wavelength λ. The beam travels in vacuum until it enters a glass plate at an angle θ relative to the normal to the plate. The index of refraction of the glass is given by n(λ). The angular spread δθ' is given by

A. 

B. 

C.

D.

E.
(GR0177 #97)
Solution:

Snell's Law: nsin θ1 nsin θ2

Given:
n= 1 for vacuum
n= n(λ
θθ
θ θ'

sin θ n(λ) sin θ'

Take the derivative of the equation with respect to λ:

dsin θ/dλ dn(λ)sin θ'/ ...(Eq.1)

θ is a constant → dsin θ/dλ = 0

Eq.1 
dn(λ)sin θ'/ 
0 = n(λ(dsin θ'/) + sin θ' (dn(λ)/)   ...(Eq.2)

Since n is a function of λθ' is also a function λ →  
dsin θ'/dλ (dsin θ'/dθ')(dθ'/) cos θ' (dθ'/) 

Eq.2 
0 = n(λ) cos θ' (dθ'/) + sin θ' (dn(λ)/
n(λ) cos θ' (dθ'/)  sin θ' (dn(λ)/
n(λ) (dθ'/)  tan θ' (dn(λ)/
dθ'/  (tan θ'/n(λ)) (dn(λ)/
δθ' = |(tan θ'/n(λ)) (dn(λ)/)|

Answer: E

No comments :