Classical Mechanics - Linear Momentum

A helium atom, mass 4u travels with non relativistic speed v normal to the surface of a certain material, makes an elastic collision with an (essentially free) surface atom, and leaves in the opposite direction with speed 0.6v. The atom on the surface must be an atom of

A. Hydrogen, mass 1u
B. Helium, mass 4u
C. Carbon, mass 12u
D. Oxygen, mass 16u
E. Silicon, mass 28u
(GR9677 #20)
Solution:

ma = 4u
v = v
v = 0
va= − 0.6v

Conservation of momentum of the system:

mavmbvb = mavambvb
4uv = 4u(− 0.6v) mbvb
4uv = − 2.4uv  mbvb
mbvb= 6.4uv (Eq.1)

Conservation of kinetic energy of the system:

½ mava² + ½ mbvb² = ½ mava'² + ½ mbvb'²
4uv² 4u(− 0.6v)² + mbvb'²
4uv² 4u(0.36v²) + mbvb'²
mbvb'² =  4uv²  − 1.44uv²
mbvb'² =  2.56uv² (Eq.2)

(Eq.1) → (Eq.2)
6.4 (vb') = 2.56v
vb' =  (2.56/6.4)= 0.4v  (Eq.3)

(Eq.3) → (Eq.1)
m= 6.4u/ 0.4= 16u

Answer: D

No comments :