Classical Mechanics - Acceleration

A particle of unit mass undergoes one-dimensional motion such that its velocity varies according to v(x) = βxn where β and n are constants and is the position of the particle. What is the acceleration of the particle as a function of x?

A. −2x−2n−1
B. −2xn−1
C. −2xn
D. −β2xn+1
E. −β2x−2n+1
(GR9677 #44)
Solution:

dv/dt = (dv/dx) (dx/dt) =  (dv/dx) v

Given: v(x) = βxn
dv/dx =  nβxn−1

Thus, (nβxn−1βx2x−2n−1

Answer: A

No comments:

Post a Comment