Electromagnetism - Superposition

Questions 54-55 concern a plane electromagnetic wave that is a superposition of two independent orthogonal plane waves and can be written as the real part of 

 E E1 exp [i(kz ωt)] +   Eexp [i(kz − ωt + π)]
where kωE1 and E2 are real

If E2 = E1, the tip of the electric field vector will describe a trajectory that, as viewed along the z-axis from positive z and looking toward the origin, is a

A. Line at 45to the + x-axis
B. Line at 135o to the + x-axis
C. Clockwise circle
D. Counterclockwise circle
E. Random path
(GR9677 #54)
Solution:

E = x̂ E1 ei(kz − ωt   Eei(kz − ωt +π
E = x̂ E1 ei(kz − ωt   Eei(kz − ωt· e 

with 
E2 = EE
e = −1

E = E ei(kz − ωtx̂ − ei(kz − ωt 
E = a x̂  a  

tan θ  a / (a) = −1

tan 45  = 1
tan 135 tan 315 = −1

Answer: B


Note: 
eiϕ = cos ϕ isin ϕ
e = cos π isin π =  −1 + 0 = −1

No comments:

Post a Comment