Questions 54-55 concern a plane electromagnetic wave that is a superposition of two independent orthogonal plane waves and can be written as the real part of
E = x̂ E1 exp [i(kz −ωt)] + ŷ E2 exp [i(kz − ωt + π)]
where k, ω, E1 and E2 are real
If the plane wave is split and recombined on a screen after the two portions, which are polarized in the x- and y- directions, have traveled an optical path difference of 2π/k, the observed average intensity will be proportional to
A. E1² + E2²
B. E1² − E2²
C. (E1+ E2)²
D. (E1− E2)²
E. 0
(GR9677 #55)
E = x̂ E1 ei(kz − ωt) + ŷ E2 ei(kz − ωt +π )
Path difference of 2π/k
E = x̂ E1 ei(kz − ωt) + ŷ E2 ei[k(z + 2π/k) − ωt + π)
E = x̂ E1 ei(kz − ωt) + ŷ E2 ei[kz − ωt) · ei3π
ei3π = −1
E = x̂ E1 ei(kz − ωt) − ŷ E2 ei(kz − ωt)
Intensity in the x- directions, Ix = |E1|²
Intensity in the x- directions, Iy = |−E2|²
Itotal = Ix + Iy = E1² + E2²
Answer: A
No comments:
Post a Comment