Electromagnetism - Polarization

Questions 54-55 concern a plane electromagnetic wave that is a superposition of two independent orthogonal plane waves and can be written as the real part of 

E =  E1 exp [i(kz ωt)] +   Eexp [i(kz − ωt + π)]
where kωE1 and E2 are real

If the plane wave is split and recombined on a screen after the two portions, which are polarized in the x- and y- directions, have traveled an optical path difference of 2π/k, the observed average intensity will be proportional to

A. E1² E2² 
B. E1² − E2² 
C. (E1E2 
D. (E1− E2 
E. 0
(GR9677 #55)
Solution:

E = x̂ E1 ei(kz − ωt   E ei(kz − ωt +π 

Path difference of 2π/k
E = x̂ E1 ei(kz − ωt   E ei[k(z + 2π/k) − ωt π

E = x̂ E1 ei(kz − ωt   E ei[kz − ωt· ei3π 
ei3π = −1

E = x̂ E1 ei(kz − ωt    E ei(kz − ωt

Intensity in the x- directions, Ix = |E1|²  
Intensity in the x- directions, Iy = |E2 

Itotal IIy E1² E2²

Answer: A

No comments:

Post a Comment