Classical Mechanics - Torque



A solid cone hangs from a frictionless pivot at the origin O as shown above. If ,  and k̂ are unit vectors, and a, b, and c are positive constants, which of the following forces F applied to the rim of the cone at point P results in a torque τ on the cone with a negative component τz?

A. F = a, P is (0, b, −c)
B. F = −aP is (0, −b, −c)
C. F = aP is (–b, 0, −c)
D. F = aP is (b, 0c)
E. F = −aP is (−b, 0, −c)
(GR9277 #08)
Solution:

Torque:
Result desired: negative component of τso we are looking for minus k̂ component.

For k̂ component: rxFy − ryFx

Thus, Fand Fcannot be zero

(A) FALSE
 F = ak̂ → F= 0 and F= 0

(B) and (E) FALSE
F = −ak̂ → F= 0 and F= 0

(C) TRUE
F = aĵ → F= 0, Fa,  r= −br= 0,
P is (–b, 0, −c) → r= −br= 0
rxFy − ryF= −ab − 0 =  −abk̂ (negative k̂ component)

(D) FALSE
F = aĵ F= 0, Fa,
P is (b, 0c) → rbr= 0,
→ rxFy − ryF= ab − 0 =  abk̂ (positive k̂ component)

Answer: C

No comments :