A. ɛ0 R/B
B. 2πɛ0/R
C. ɛ0/BπR2
D. ɛ02/BR2
E. tan−1(ɛ0/Bc)
(GR9677 #46)
Faraday's Law: ɛ = − dΦ/dt
with Φ = NBA
Given:
N = 1
B uniform (constant)
ɛ = ɛ0 sin ωt
→ ɛ = − B dA/dt = ɛ0 sin ωt
− B dA = ɛ0 sin ωt dt
B ∫dA = ɛ0 ∫ sin ωt dt
− BπR2 = − ɛ0/ω cos ωt
ω = ɛ0 cos ωt / BπR2
at t = 0,
ω = ɛ0 / BπR2
Answer: C
Alternative solution:
A = πR2 cos ωt
ɛ = − dΦ/dt = − B dA/dt
ɛ = − BπR2 d(cos ωt)/dt
ɛ0 sin ωt = BπR2ω sin ωt
ɛ0= BπR2ω
ω = ɛ0 / (BπR2)A = πR2 cos ωt
ɛ = − dΦ/dt = − B dA/dt
ɛ = − BπR2 d(cos ωt)/dt
ɛ0 sin ωt = BπR2ω sin ωt
ɛ0= BπR2ω
No comments:
Post a Comment