Electromagnetism - Faraday’s law



A circular wire loop of radius R rotates with an angular speed ω in a uniform magnetic field B, as shown in the figure. If the emf ɛ induced in the loop is ɛ0 sin ωt, then the angular speed of the loop is

A. ɛ0 R/B
B. 2πɛ0/R
C. ɛ0/BπR2
D. ɛ02/BR2
E. tan−1(ɛ0/Bc)
(GR9677 #46)
Solution:

Faraday's Law: ɛ = − dΦ/dt
with  Φ = NBA  

Given:
= 1
B uniform (constant)
ɛ =  ɛ0 sin ωt

→ ɛ = − B dA/dt =  ɛ0 sin ωt
− B dA =  ɛ0 sin ωdt 
 B ∫dA =  ɛ0 ∫ sin ωdt 
− BπR2 = − ɛ0/ω  cos ωt
ω = ɛcos ωt / BπR2

at t = 0,
ω ɛ/ BπR2

Answer: C


Alternative solution:
πR cos ωt
ɛ = − dΦ/dt = − B dA/dt 
ɛ = − BπR d(cos ωt)/dt 
ɛ0 sin ωt BπR2ω  sin ω
ɛ0BπR2ω  
ω ɛ/ (BπR2)

No comments:

Post a Comment