Classical Mechanics - Lagrangian



A bead is constrained to slide on a frictionless rod that is fixed at an angle θ with a vertical axis and is rotating with angular frequency ω about the axis, as shown above. Taking the distance s along the rod as the variable, the Lagrangian for the bead is equal to

A. ½ mṡ ² − mgs cos θ 
B. ½ mṡ ² + ½ m(ωs − mgs 
C. ½ mṡ ² + ½ m(ωcos θ + mgs cos θ
D. ½ m(ṡ sin θ)² − mgs cos θ 
E. ½ mṡ ² + ½ m(ωsin θ − mgs cos θ
(GR9677 #68)
Solution:

Lagrangian: L = T U

Potential energy: U = mgh = mgs cos θ 
Kinetic Energy:  Tkin  =  ½ mṡ ²
Rotational kinetic energy:  Trot =  ½ ²
with moment inertia: = mr²  = m(sin θ
→ Trot = ½ m(ωsin θ

Tkin Trot − U =  ½ mṡ ² + ½ m(ωsin θ − mgs cos θ

Answer: E

No comments:

Post a Comment